RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway
نویسندگان
چکیده
Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
منابع مشابه
RAB-6.1 and RAB-6.2 Promote Retrograde Transport in C. elegans.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling o...
متن کاملRegulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8.
After endocytosis, most cargo enters the pleiomorphic early endosomes in which sorting occurs. As endosomes mature, transmembrane cargo can be sequestered into inwardly budding vesicles for degradation, or can exit the endosome in membrane tubules for recycling to the plasma membrane, the recycling endosome, or the Golgi apparatus. Endosome to Golgi transport requires the retromer complex. With...
متن کاملGrd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p-Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p-Ftr1p is ma...
متن کاملThe retromer complex and clathrin define an early endosomal retrograde exit site.
Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastr...
متن کاملRetromer Endosome Exit Domains Serve Multiple Trafficking Destinations and Regulate Local G Protein Activation by GPCRs
Retromer mediates sequence-directed cargo exit from endosomes to support both endosome-to-Golgi (retrograde transport) and endosome-to-plasma membrane (recycling) itineraries. It is not known whether these trafficking functions require cargos to exit endosomes separately via distinct transport intermediates or whether the same retromer-coated carriers can support both itineraries. We addressed ...
متن کامل